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Magnetic fields effects in ICF/HED systems well 
before Beta is anywhere near unity: 
experiments and recent theory
Kirk Flippo, Applied and Fundamental Physics, P-2

ICF Update, 2021
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• Hui Li (T-2)
• Shengtai Li (T-5)
• Yingchao Lu (T-2, Rice)
• James Sadler (T-2)
• Andy Liao (T-2, Fuse Energy Technologies)
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• Dennis Bowen (XCP-2)
• Nick Denissen (XCP-1)
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This Team executed 7 shot days (Omega and EP) and 
10,000’s of CPU hours over the past 4 years for 2 
projects

• (LDRD DR) High Energy Density B-fields (HEDB), to study the strength and 
effects of self generated B-fields in Shock-Shear like geometries

• (LDRD ER) Turbulent Magnetic Dynamo (TMD), to study the generation, 
amplification (via Dynamo), and saturation of magnetic fields that pervade the 
universe
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Publications from work in the talk
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This work was motivated by some recent experiments showing B-field 
production via the Biermann Battery (BB) process

Jet experiment on OMEGA
Li et al. 2016, Nature 
Communications

RT experiment on Omega
Gao et al. PRL, 2013, 2015

Turbulent B field experiment on 
Vulcan, 
Meinecke et al. Nature Physics (2014)

BB process has been confirmed in several HED experiments: 

1) 2) 3)

Still these are not dynamos, Rm is too low
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And Recent Omega Experiments (and NIF) which 
showed more amplification and turbulent structure

• Omega Experiment (Oxford collaboration) recently showed 
amplification with high Rm, but still not a dynamo.

• Vel 55 km/s, Te ~ 450 eV, ne~1020 /cm3

• Re~600, Rm ~ 700, inferred 100 kG from an initial 4 kG
(BB field).

• Is it saturated? It is cooling fast, and 5 ns drive work better 
than 10 ns drive. Thus likely not enough energy density in 
the system to make a dynamo (or keep it going)

Magnetic E density (sim)

TKE Kolomogorov
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This brings us to ICF, where we have interface instabilities, 
baroclinicity, vorticity generation, and many gradients

Fill-tube jet
mKHI

Cold, dense shell
mRTI

xRAGE simulation
Haines et al. 2020

Hot DT gas

RTI, RMI, KHI: unstable, mixing, turbulence

Do B-fields matter?
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Turbulent Magnetic Dynamo Experiments
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We had an idea for a simpler platform for a Turbulent 
Magnetic Dynamo

Flippo, Li, et al.

Advantages Gained by Cone Design Over Foils:
1) Higher energy coupling
2) Higher temperature
3) Higher flow velocity
4) Higher density
5) Energy trapped longer
6) Tunable flows by adjusting laser and surface
7) Laser Driven ElectroMagnets (LDEMs) allow for 

tunable applied B-fields from 10 – 300 T to study 
saturation 

8) Also allow for self-generated fields

Laser-
Driven
Electro-
Magnet
(LDEM)
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It looks like this in simulations
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(FFT of autocorrelation)

k-2

FLASH 3D magnetic field model

TNSA 
proton 
backlighter

30 MeV synthetic radiograph & 
autocorrelation

Synthetic TNSA proton beam against simulated magnetic fields at 10 ns creates synthetic radiograph. Analysis6 of  the synthetic radiograph 
reveals the k-2 spectral energy distribution (SED) of magnetic energy. This SED arises in supersonic, compressively-driven turbulence.

1) Higher energy coupling
2) Higher temperature
3) Higher flow velocity
4) Higher density
5) Energy trapped longer

We can diagnose this plasma with:
1. X-ray
2. Optical
3. P-Rad

Flippo, HL, 2017
Liao et al. (2019)

TMD Expt: (PI: K. Flippo, Co-PI: HL)
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3D FLASH Simulation – Turbulence, Vorticity

Vorticity ~ 3e9 

Duration ~ 3 ns

eddy turn-over: 
3e9 * 3e-9 
~ 10 turns

on ~ mm scale

There will be many more eddy 
turn-over times for smaller 
scales. This is very favorable 
for turbulence amplification of 
magnetic fields.  
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Exponential Growth of Magnetic Energy Reveals Turbulent Dynamo

Liao et al. POP (2019)Strong exponential growth over many ns 
suggests observable turbulent dynamo
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Consistency between X-ray measurement and Sim. shows 
Te ~ 1.5 keV

Simulation
Be + Al

Experiment
Be only (to improve S/N)

Emission region fills to and highlights proximal cone lip

Liao et al. (2021)
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Good Agreement between Simulation and Density Measurement: 
angular filter refractometry plasma density diagnostic

Plume density
ne
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TNSA P-rad Analysis: Shows B-field growth

B 105G 

t = 8 ns

Liao et al. (2021)
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Increasing source proton energy reveals finer structure

Increasing source proton energy reveals finer structure Liao et al. (2021)

Details in Flux Images are Revealed with Higher Source Proton Energies
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TNSA P-rad 
Images at
T = 5, 6, 7, 8 
ns

Liao et al. (2020)

Experimental pRad Images show growth in structure over time



185/20/2021

Take L ~ 0.3 mm
Then, we get:

Turbulent dynamo is expected, 
consistent with our experimental 
measurements Liao et al. (2021)

Magnetic Energy Evolution Shows Growth of B-field Energy
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HEDB Experiments



205/20/2021

Au shield 
Cone

• Shear generates magnetic field in the center, which is probed by x-rays 
and protons

HEDB uses a new Experiment Designed to Use Our Shock-
Tube Cylinder and Uses Shear Flows to Produce B-fields

Grid fiducial
for Protons

View along proton radiography axis

Laser drive
8 beams 
(H9 side)

Laser drive
8 beams 
(H12 side)

Be tube

X-ray probe direction Internal Geometry 
from x-ray POV

Counter 
streaming 

flows

pRad axis

Au shield 
Cone
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3D extended, radiation magnetohydrodynamic
simulations (FLASH) and prad analysis tools (MPRAD)

density Magnetic fields

Work led by Shengtai Li et al.
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Static X-ray radiographs of targets showing foil

X-ray view

Proton view
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Synthetic Radiographs from Simulations for HEDB OMEGA Shots
• MPRAD can model the images at different proton energies, which can help us optimize the 

etching process after the shots, each image is about 1 MeV in energy range.

Yingchao Lu
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shock

shock

Proton Source 
(DHe3 implosion)

pRad
projected

shock

shock

PPS

Resulting 
pRad image
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Magnetic field evolution in proton radiographs targets follows 
simulation predictions, but window fields are hard to disentangle

5/20/2021 |   25
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Pepper-pot foil is used to collimate proton beam and 
simplify proton deflection detection

Gold target No B-field

Gold target B-field

No pepper-pot Pepper-pot

No quantifiable shift in 
signal without pepper 
pot foil

View of pepper pot foil
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Experimental pRad images with Pepperpot, made the 
shift more obvious

2020 
Experimental 
pRad

2019 PPS Target (Versa) 2019 pRad CR-392019 X-ray IP
20

19
 P

PS
 R

es
ul

ts

Synthetic 
pRad
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HEDB Deflection Results show B-field of 20-30 Tesla
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Simulations with 
B-field

Experiment

Simulations 
no B-field
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Simulation and Theory
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FLAG Shear Coaxial Shock-Tube Movie

CH Ablator

High Density Foam

Low Density Foam

Be Shock Tube

Coaxial Foam Geometry

Cylindrical Axis of symmetry
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Shock convergence is insensitive to usage of the dynamic 
mix model.
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Specific internal energy is ~8(10-3) cm2/ sec2 in the mixing 
layer.
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Specific Turbulent Kinetic Energy ~ 10-5cm2/ sec2 in the 
mixing layer. 
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Biermann Battery generated specific magnetic energy ~ 10-2 

cm2/ sec2 Note: This is with JXB forces zeroed out and no resistive 
evolution.
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turbulence is spatially located away from the location of the 
magnetic field generation
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Biermann Battery Process: Baroclinicity B Fields

For ICF:

We get:

Or: (104 Tesla)
(A similar magnitude of B field generation from composition gradient process. 
See Sadler, HL, 2020a,b)
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Is this field Strong or Weak for ICF?

• Three quantities to keep in mind
Compare to 
thermal pressure

Compare to 
turbulent energy 
density

Magnetization 
parameter: 
electron gyro-
frequency over 
collision freq.

ICF Hot Spot

~ 100

~ ??

~ 1

T_e = 2.5 keV; n_e = 1e25 /cc; B = 1e8 G
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Effects of Magnetic Fields with Full xMHD

Sadler, HL, Flippo, 2021, in preparation

Blue shaded region 
is where magnetized 
heat flux matters!

Nernst,
Heat 
Flux, and 
resistive 
MHD
important
in ICF 
hot-spot!
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Implications of such magnetic fields

Implications for turbulent mix models (w. T. Gianakon,                  
Chris Rousculp, B. Albright), ASC codes

Implications for charged particle transport
Implications for interface instabilities and experiments
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Will self-generated B field affect turbulent mix?
• Implement BB term in the FLAG code. Verified with other codes such as 

FLASH and LA-COMPASS (led by Gianakon, Rouscoulp, S. Li)
• FLAG simulation of shock tubes with mix model shows that the self-

generated BB magnetic field energy density is higher than the turbulence 
energy density

Li et al. in 
preparation 
(2021)

w. Turb mix 
model and B-field 
self-generation
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Implications for ICF: B field post-processing of xRAGE hydro 
simulation of an NIF shot

J. Sadler et al. 
Phys. Plasmas 27, 
072707 (2020).
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The new Z gradient source term makes a difference

Biermann + 
Z gradient

Biermann 
only
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For ICF: Electrons are magnetized by the self-generated B fields, 
could affect alphas as well

• Effects on electron heat conduction and charged particle 
transport

Sadler, HL et al. PoP (2020)

At both RTI and KHI interfaces

(3.5 MeV alphas)
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Other Implications for ICF: altering electron heat transport and 
interface instabilities

mRTI with self-generated B 
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B-field Electron heat-flux modified KHI

w. 
heat 
flux

w/o. 
heat 
flux

w. 
heat 
flux
w/o.
BB

w. 
heat 
flux
w.
BB
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